

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/22
Paper 2			May/June 2011
		1	hour 15 minutes
Candidates ans	swer on the Question Paper.		
No Additional M	laterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
3			
4			
5			
6			
7			
Total			

This document consists of 14 printed pages and 2 blank pages.

UNIVERSITY of CAMBRIDGE International Examinations

1 The diagram shows the electronic structures of six atoms.

(a) Answer the following questions by choosing from the structures A, B, C, D, E or F. You can use each structure once, more than once or not at all.

Which structure represents

- (i) an atom in Period 3 of the Periodic Table,(ii) an atom containing six protons,
- (iii) an atom of a Group I metal,
- (iv) an atom of phosphorus,
- (v) an atom with six electrons in its outer shell,
- (vi) an atom with a complete outer shell of electrons?
- (b) Atoms D and F can combine to form a covalent molecule.
 - (i) Complete the following sentence using words from the list.

atoms	electrons	ions	neutrons	solids
A covalent b	oond is formed v	when a pair of		. is shared between
two				[2]

(ii) Which one of the following structures represents an ionic compound? Tick **one** box.

For Examiner's Use

[6]

2 Many metal oxides can be reduced with carbon.

The table shows the temperatures required to produce different metals from their oxides by heating with carbon.

reaction	temperature/°C
aluminium oxide \rightarrow aluminium	2100
iron oxide \rightarrow iron	425
nickel oxide \rightarrow nickel	475
zinc oxide \rightarrow zinc	925

(a) (i) Use the information in the table to arrange aluminium, iron, nickel and zinc in order of their reactivity.

least r	reactive most reactive
	[1]
(ii)	Suggest why aluminium is extracted by electrolysis rather than by heating with carbon.
(iii)	State the name of the main ore of aluminium.
	[1]
(b) Iror	n is extracted by heating iron ore with carbon in a blast furnace.
(i)	Apart from iron ore and carbon (coke), state the names of two other raw materials used in the blast furnace for the extraction of iron.
	and [2]
(ii)	Complete this equation for the reaction of iron(III) oxide with carbon.
	Fe_2O_3 +CO \rightarrow Fe + $3CO_2$ [2]
(iii)	In the blast furnace, carbon dioxide reacts with red hot carbon to form carbon monoxide.
	CO_2 + C \rightarrow 2CO
	Which substance gets reduced during this reaction? Explain your answer.
	www.sparkl.me
	I

0620/22/M/J/11

For Examiner's Use

(iv)	State one adverse effect of carbon monoxide on health.	
(v)	The reaction between carbon dioxide and red hot carbon is endothermic. What do you understand by the term <i>endothermic</i> ?	
(c) Iror	n is usually made into steel alloys.	
(i)	What do you understand by the term <i>alloy</i> ?	
	[1]	
(ii)	Mild steel is an alloy. State one use of mild steel.	
	[1]	
	[Total: 13]	

4

For Examiner's Use

(d) A steel spoon can be electroplated using the apparatus shown.

Give a description of this electroplating. In your answer, refer to:

- a suitable electrolyte that can be used;
- the anode and the cathode;
- changes to the spoon.

[Total: 9]

For

Examiner's Use

7 For 4 Ethanol can be produced by fermentation or by the catalytic addition of steam to ethene. Examiner's Use (a) (i) Complete the word equation for fermentation. glucose \rightarrow + ethanol [1] (ii) State the conditions needed for fermentation. (b) (i) Complete the equation for the catalytic addition of steam to ethene by drawing the structures of water and ethanol in the boxes. C₂H₅OH C_2H_4 +H₂O \rightarrow Н Н + \rightarrow Н Н [2] (ii) Ethene is an unsaturated hydrocarbon. Describe a test for an unsaturated hydrocarbon. test (c) Ethanol can be used as a fuel. State the names of the products formed when ethanol undergoes complete combustion. and [2] (d) Complete these sentences using words from the list. different functional homologous similar unreactive unsaturated Ethanol is a member of the alcohol series. All alcohols have chemical properties because they contain the same [3] group. [To www.sparkl.me

5 The structures of diamond and chlorine are shown below.

(a) Describe the structure of these two substances. Use the list of words to help you.

covalent	diatomic	giant	macromolecule	molecule	structure
diamond					
chlorine					
					[4]

(b) The structure of a compound containing carbon and chlorine is shown below.

What is the molecular formula of this compound?

......[1]

www.sparkl.me

For Examiner's Use

				9			
(c)	Chle	orine is a halo	gen.				For Examiner's
	(i)	State the cold	our of chlorine.				Use
						[1]	
	The	tabla abawa a					
	The		some properties of t	ne halogens.		_	
		element	boiling point/°C	density in liquid state/g per cm ³	colour	_	
		fluorine	-188	1.51	yellow		
		chlorine	-35	1.56			
		bromine	-7		red-brown	-	
		iodine	+114	4.93	grey-black		
	Use	e the information	on in the table to an	swer the following	questions.		
	(ii)	Predict the de	ensity of liquid brom	ine.			
	()					[4]	
						[1]	
	(iii)	Describe the	trend in boiling poin	it of the halogens d	lown the group.		
						[1]	
(d)	(i)	Complete the iodide.	e word equation for	the reaction of br	omine with aqueo	ous potassium	
	h	romine + pot	assium iodide \rightarrow		+		
	D						
						[2]	
	(ii)	Explain why h	promine does not re	eact with aqueous r	ootassium chloride	٩	
	(")						
						[1]	
(e)			le is an ionic substa c and molecular sub			nce.	
	HOV	v do most ioni	c and molecular suc	ostances diller in th	leir		
	solu	ubility in water,					
	elec	ctrical conduct	ivity?				
						[2]	
						[To	
					WW	w.sparkl.me	

1101	(11)	bunate le a light groon balt.				
(a)	dilute sulfuric acid.					
		[3]				
(b)	The	e formula for iron(II) sulfate is $FeSO_4$.7H ₂ O.				
	(i)	What is the meaning of the symbol (II) in this formula?				
	(ii)	Describe a test for iron(II) ions.				
		test				
		result[3]				
	(iii)	A student warmed a sample of iron(II) sulfate, $FeSO_4.7H_2O$, in a test-tube. Drops of a colourless liquid appeared at the mouth of the test-tube and the iron(II) sulfate turned white. Explain these observations.				
		[1]				
	(iv)	The reaction in part (iii) can be reversed. Write down the symbol which shows that a reaction is reversible.				
		[4]				
		[1]				
(c)		ny centuries ago, sulfuric acid was made from iron(II) sulfate. furic acid is a typical acid.				
	(i)	Describe what you would observe when sulfuric acid is added to				
		blue litmus paper,				
		iron powder				

For

Examiner's Use

10

Iron(II) sulfate is a light green salt.

6

(ii)	Farmers can add a solution of dilute sulfuric acid to their fields if the soil is too alkaline. Explain why farmers do not want their fields to become too alkaline.						For Examiner's Use
						[1]	
(iii)	 Which one of the following pH values best describes a solution which is slightly alkaline? Put a ring around the correct answer. 						
	pH 1	рН 6	рН 7	рН 8	pH 14	[1]	
(iv)	Give the name of	a compound w	/hich farmers a	idd to the soil t	to make it less	acidic.	
						[1]	

11

[Total: 14]

7 Smelling salts are sometimes used to 'wake up' people who feel faint. The main chemical in smelling salts is ammonium carbonate. Ammonium carbonate breaks down slowly at room temperature to release ammonia gas.

ammonium carbonate \rightarrow ammonia + carbon dioxide + water

(a) A few crystals of ammonium carbonate were put on a bench at the front of a classroom.

The students in row **A** could smell the ammonia 10 seconds after the smelling salts had been put on the bench. The students in row **C** could smell the ammonia after 40 seconds.

- (i) Suggest how long it took the students in row **B** to smell the ammonia.
- (ii) Explain these results using ideas about moving particles.
 [3]
- (b) Ammonium carbonate has the formula $(NH_4)_2CO_3$. Calculate the relative formula mass of ammonium carbonate.

[1]

For

Examiner's

Use

- (c) Ammonia is used to make fertilisers such as ammonium sulfate.
 - (i) State the names of the **three** chemical elements, essential for plant growth, that are present in fertilisers.

.....

		13	
	(ii)	Which one of the following statements about ammonium sulfate is correct? Tick one box.	For Examiner's Use
		When ammonium sulfate is heated with sodium hydroxide, carbon dioxide is given off.	
		When ammonium sulfate is added to a solution of barium chloride, a blue precipitate is formed.	
		Ammonium sulfate can be made by adding sulfuric acid to ammonia.	
		Farmers add ammonium sulfate to the soil to make it alkaline. [1]	
(d)		monium carbonate is made by heating ammonium sulfate with excess calcium ponate.	
am	mon	ium sulfate + calcium carbonate \rightarrow ammonium carbonate + calcium sulfate	
	carl Cal	en 132 g of ammonium sulfate is reacted with calcium carbonate, 96 g of ammonium conate is formed. culate the mass of ammonium sulfate needed to make 240 g of ammonium conate.	
		[1]	
		[Total: 10]	
		[Total: 10]	

BLANK PAGE

14

BLANK PAGE

15

	0	4 He Helium	20 Neon Argon	84 Krypton 131	Xenon	Radon Radon	175 Lutetium 11 Lawrendum
		¥ ▲ ∽	9 10	36	54	88	
	>		19 9 Fluorine 35.5 Chlorine 17	80 Bromine 35 127	53 lodine	At Astatine 85	173 Yb Vtterbium 70 Nobelium
	5		16 8 Oxygen 8 32 32 Suffur	79 Selenium 34	Tellunium 52	Polonium 84	169 Thulium 69 Mendelevium 00
	>		14 Nitrogen 7 31 Phosphorus	75 AS Arsenic 33	Sb Antimony 51	83 Bismuth Bismuth	67 68 Fermium Fermium
	≥		6 Carbon 6 28 28 14 Silicon	73 Germanium 32 119	50 Tin Sn	82 Lead B2	165 Holmium 67 Einsteinium
	≡	•	11 B B Boron 5 27 Atuminium 13	70 Gaa 31 115	In Indium 49	T1 Thallium 81	162 Dysprosium 66 Cf Cf
				65 Zn 30 ^{Zinc} 112	Cd Cadmium 48	Mercury 80 Mercury	159 Tb 65 BK Berkelium
				64 Cu 29 20 29 108	Ag Silver 47	Au Bool 79	157 Gd Gadolinium 64 Curium
Group				59 Nickel 106	Pd Palladium 46	Platinum 78	152 Europium 63 Americium
Gro				59 Co 27 103	Rhodium 45 192	Iridium 77	150 Samarium 62 Putonium
		¹ Hydrogen		56 Iron 26 101	Ruthenium 44	Osmium 76	Promethium 61 Neptunium
			-	55 Manganese 25	Technetium 43 186	Rhenium 75	144 Neodymium 60 238 238 238 0 Uranium
				52 Chromium 24	Molybdenum 42 184	Tungsten 74	141 Praseodymium 59 Protactinium
				-	Niobium 181	181 Ta Tantalum 73	140 Cerium 58 Cerium 58 Thorium
				48 Titanium 22 91	Zr Zirconium 40		iic mass ool ic) number
				45 Scandium 21 89	39 Yttrium 39 139	Lanthanum 57 * * 227 Actinum 89 †	<pre>*58-71 Lanthanoid series 190-103 Actinoid series Key b b b c c c c c c c c c c c c c c c c</pre>
		1			Ę		id s b==
	=		9 Berylium 4 24 Mg Magnesium	40 Calcium 20	Strontium 38	13/ Ba Barium 56 226 226 Radium	*58-71 Lanthanoid series 190-103 Actinoid series Key a = relativ key b = proton

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared wh reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwitting publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand na Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.