

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

|        | CANDIDATE<br>NAME |                            |                   |
|--------|-------------------|----------------------------|-------------------|
|        | CENTRE<br>NUMBER  | CANDIDATE<br>NUMBER        |                   |
| *      |                   |                            |                   |
| 6      | CHEMISTRY         |                            | 0620/31           |
| 4 5    | Paper 3 (Extend   | ded)                       | May/June 2011     |
| ≥ 0    |                   |                            | 1 hour 15 minutes |
| 1 8    | Candidates ans    | wer on the Question Paper. |                   |
| ~<br>~ | No Additional M   | aterials are required.     |                   |

## READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

| For Examiner's Use |  |  |  |  |  |
|--------------------|--|--|--|--|--|
| 1                  |  |  |  |  |  |
| 2                  |  |  |  |  |  |
| 3                  |  |  |  |  |  |
| 4                  |  |  |  |  |  |
| 5                  |  |  |  |  |  |
| 6                  |  |  |  |  |  |
| 7                  |  |  |  |  |  |
| 8                  |  |  |  |  |  |
| Total              |  |  |  |  |  |

This document consists of **11** printed pages and **1** blank page.



UNIVERSITY of CAMBRIDGE International Examinations

| 1 | The foll                                                                                                             | owing techniques are used                                                                      | to separate mixtures.                                                                                                                                      |                                   | For<br>Examiner's |  |  |  |
|---|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------|--|--|--|
|   | ,                                                                                                                    | A simple distillation                                                                          | B fractional distillation                                                                                                                                  | C evaporation                     | Use               |  |  |  |
|   |                                                                                                                      | D chromatography                                                                               | E filtration                                                                                                                                               | F diffusion                       |                   |  |  |  |
|   | From th                                                                                                              | is list, choose the most suit                                                                  | able technique to separate the                                                                                                                             | e following.                      |                   |  |  |  |
|   | <b>(a)</b> me                                                                                                        | thane from a mixture of the                                                                    | gases, methane and ethane .                                                                                                                                | [1]                               |                   |  |  |  |
|   | <b>(b)</b> wat                                                                                                       | ter from aqueous magnesiu                                                                      | m sulfate                                                                                                                                                  | [1]                               |                   |  |  |  |
|   | <b>(c)</b> gly                                                                                                       | cine from a mixture of the a                                                                   | mino acids, glycine and lysine                                                                                                                             | [1]                               |                   |  |  |  |
|   | <b>(d)</b> iror                                                                                                      | [1]                                                                                            |                                                                                                                                                            |                                   |                   |  |  |  |
|   | <b>(e)</b> zine                                                                                                      | c sulfate crystals from aque                                                                   | ous zinc sulfate                                                                                                                                           | [1]                               |                   |  |  |  |
|   | (f) hex                                                                                                              | ane from a mixture of the li                                                                   | quids, hexane and octane                                                                                                                                   | [1]                               |                   |  |  |  |
|   |                                                                                                                      |                                                                                                |                                                                                                                                                            | [Total: 6]                        |                   |  |  |  |
| 2 | Seleniu                                                                                                              | m and sulfur are in Group \                                                                    | <ol> <li>They have similar propertie</li> </ol>                                                                                                            | S.                                |                   |  |  |  |
|   | (a) One of the main uses of selenium is in photoelectric cells. These cells can change light into electrical energy. |                                                                                                |                                                                                                                                                            |                                   |                   |  |  |  |
|   | (i) Name a process which can change light into chemical energy.                                                      |                                                                                                |                                                                                                                                                            |                                   |                   |  |  |  |
|   | (ii)                                                                                                                 | Name a device which can                                                                        | change chemical energy into                                                                                                                                | electrical energy.<br>[2]         |                   |  |  |  |
|   | <b>(b)</b> The                                                                                                       | e electron distribution of a s                                                                 | elenium atom is 2 + 8 + 18 + 6                                                                                                                             | 6.                                |                   |  |  |  |
|   | (i)                                                                                                                  | the formula of this ionic co<br>the <b>valency</b> electrons are<br>Use o to represent an elec | compound with potassium. Dra<br>mpound, the charges on the id<br>und the negative ion.<br>ctron from an atom of potassiu<br>ctron from an atom of selenium | ons and the arrangement of<br>Im. |                   |  |  |  |
|   |                                                                                                                      |                                                                                                |                                                                                                                                                            |                                   |                   |  |  |  |

2

www.sparkl.me

© UCLES 2011

|      | 3                                                                                                                                                                                                                                                                              |                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|      | <ul> <li>(ii) Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound selenium chloride.<br/>Use x to represent an electron from an atom of selenium.<br/>Use o to represent an electron from an atom of chlorine.</li> </ul> | For<br>Examiner's<br>Use |
|      | <ul><li>(iii) Predict two differences in the physical properties of these two compounds.</li></ul>                                                                                                                                                                             |                          |
|      | [2]                                                                                                                                                                                                                                                                            |                          |
| (c)  | The selenide ion reacts with water.                                                                                                                                                                                                                                            |                          |
|      | Se <sup>2-</sup> + H <sub>2</sub> O $\rightarrow$ HSe <sup>-</sup> + OH <sup>-</sup>                                                                                                                                                                                           |                          |
|      | What type of reagent is the selenide ion in this reaction? Give a reason for your choice. [3] [Total: 13]                                                                                                                                                                      |                          |
| of t | from the blast furnace is impure. It contains about 4 % carbon and 0.5 % silicon. Most his impure iron is used to make mild steel, an alloy of iron containing less then 0.25 % bon.                                                                                           |                          |
| (a)  | A jet of oxygen is blown through the molten iron in the presence of a base, usually calcium oxide. Explain how the percentage of carbon is reduced and how the silicon is removed.                                                                                             |                          |
|      |                                                                                                                                                                                                                                                                                |                          |
|      | www.sparkl.me                                                                                                                                                                                                                                                                  |                          |

3

| (b) | (i)   | Why are steel alloys used in preference to iron?                                                                                                                                            | For<br>Examiner's<br>Use |
|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|     | (ii)  | State a use of the following alloys.                                                                                                                                                        |                          |
|     |       | mild steel                                                                                                                                                                                  |                          |
| (c) | Bot   | stainless steel                                                                                                                                                                             |                          |
| ( ) |       | electrons.                                                                                                                                                                                  |                          |
|     | (i)   | Suggest an explanation for why they have high melting points.                                                                                                                               |                          |
|     |       |                                                                                                                                                                                             |                          |
|     |       | [2]                                                                                                                                                                                         |                          |
|     | (ii)  | Explain why, when a force is applied to a piece of steel, it does not break but just                                                                                                        |                          |
|     | . ,   | changes its shape.                                                                                                                                                                          |                          |
|     |       |                                                                                                                                                                                             |                          |
|     |       | [2]<br>[Total: 11]                                                                                                                                                                          |                          |
|     |       |                                                                                                                                                                                             |                          |
|     | •     | ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this ore is ioxide which is used to make sulfuric acid.                                                        |                          |
| (a) | (i)   | Zinc blende is heated in air. Zinc oxide and sulfur dioxide are formed. Write the balanced equation for this reaction.                                                                      |                          |
|     |       |                                                                                                                                                                                             |                          |
|     | (ii)  | Zinc oxide is reduced to zinc by heating with carbon. Name <b>two</b> other reagents which could reduce zinc oxide.                                                                         |                          |
|     |       | [2]                                                                                                                                                                                         |                          |
|     | (iii) | The zinc obtained is impure. It is a mixture of metals. Explain <b>how</b> fractional distillation could separate this mixture.<br>zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C |                          |
|     |       |                                                                                                                                                                                             |                          |
|     |       |                                                                                                                                                                                             |                          |
|     |       | www.sparkl.me                                                                                                                                                                               |                          |

4

4

| The forward reaction is exothermic. The conditions used are:                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| temperature: 450 °C<br>pressure: 2 atmospheres<br>catalyst: vanadium(V) oxide                                                                                       |
| Explain, mentioning both position of equilibrium and rate, why these conditions give the most economic yield.                                                       |
|                                                                                                                                                                     |
|                                                                                                                                                                     |
| [4]                                                                                                                                                                 |
| [Total: 10]                                                                                                                                                         |
| Hydriodic acid, HI(aq), is a strong acid. Its salts are iodides.                                                                                                    |
| (a) It has the reactions of a typical strong acid. Complete the following equations.                                                                                |
| (i)Li +HI $\rightarrow$ (1]                                                                                                                                         |
| (ii) $zinc + hydriodic \rightarrow \dots + \dots + \dots + \dots + \dots$<br>carbonate + acid $\rightarrow \dots$ [1]                                               |
|                                                                                                                                                                     |
| (iii) MgO +                                                                                                                                                         |
| your choice.                                                                                                                                                        |
|                                                                                                                                                                     |
|                                                                                                                                                                     |
| <ul> <li>(c) Describe how you could distinguish between hydriodic, HI(aq), and hydrobromic, HBr(aq) acids, by bubbling chlorine through these two acids.</li> </ul> |
| result with hydriodic acid                                                                                                                                          |
| result with hydrobromic acidwww.sparkl.me                                                                                                                           |

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ 

(b) Sulfur dioxide is used to make sulfur trioxide in the Contact Process.

For

Examiner's Use

5

(d) 20.0 cm<sup>3</sup> of aqueous sodium hydroxide, 2.00 mol/dm<sup>3</sup>, was placed in a beaker. The temperature of the alkali was measured and 1.0 cm<sup>3</sup> portions of hydriodic acid were added. After each addition, the temperature of the mixture was measured. Typical results are shown on the graph.

6 The structural formula of a butanol is given below.

 $CH_3 - CH_2 - CH_2 - CH_2 - OH$ 

petroleum  $\rightarrow$  butene  $\rightarrow$  butanol

- (a) Butanol can be made from petroleum and also by fermentation.
  - (i) Describe the chemistry of making butanol from petroleum by the following route.

www.sparkl.me

For Examiner's Use

|       | I                                                                                                                                                               |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)  | Explain, in general terms, what is meant by <i>fermentation</i> .                                                                                               |
|       |                                                                                                                                                                 |
|       |                                                                                                                                                                 |
|       |                                                                                                                                                                 |
|       | [3]                                                                                                                                                             |
|       | tanol can be oxidised to a carboxylic acid by heating with acidified potassium nganate(VII). Give the name and structural formula of the carboxylic acid.       |
| nai   | me[1]                                                                                                                                                           |
| stru  | uctural formula                                                                                                                                                 |
|       |                                                                                                                                                                 |
|       |                                                                                                                                                                 |
|       |                                                                                                                                                                 |
|       | [1]                                                                                                                                                             |
|       | tanol reacts with ethanoic acid to form a liquid, <b>X</b> , which has the sweet smell of nanas. Its empirical formula is $C_{3}H_{6}O$ and its $M_{r}$ is 116. |
| (i)   | What type of compound is liquid <b>X</b> ?                                                                                                                      |
|       |                                                                                                                                                                 |
| (ii)  | Give the molecular formula of liquid <b>X</b> .                                                                                                                 |
|       | [1]                                                                                                                                                             |
| (iii) | Draw the structural formula of X. Show all the individual bonds.                                                                                                |
|       |                                                                                                                                                                 |
|       |                                                                                                                                                                 |
|       |                                                                                                                                                                 |

For Examiner's Use

[Total: 12]

7 Excess hydrochloric acid was added to powdered zinc. The hydrogen evolved was collected and its volume measured every 20 seconds.

The experiments were repeated at the same temperature using the same number of moles of powdered magnesium and aluminium.



(a) Identify metals A, B and C by choosing from zinc, magnesium and aluminium. Give a reason for each choice.



(b) Using 'moles', explain why two of the metals form the same volume of hydrogen but the third metal forms a larger volume.

[3]

[Total: 8]

For Examiner's Use

- 8 There are two types of polymerisation - addition and condensation.
  - (a) Explain the difference between them.

..... 

(b) Poly(dichloroethene) is used to package food. Draw its structure. The structural formula of dichloroethene is shown below.



(c) The polymer known as PVA is used in paints and adhesives. Its structural formula is shown below.

0620/31/M/J/11

Deduce the structural formula of its monomer.

[1]

[2]

For

Examiner's Use



(d) A condensation polymer can be made from the following monomers.

HOOC( $CH_2$ )<sub>4</sub>COOH and  $H_2N(CH_2)_6NH_2$ 

Draw the structural formula of this polymer.

[3]

For

Examiner's Use

[Total: 8]

## **BLANK PAGE**

11

|                                             | 0                 | 4 Helium 2 | 20<br>Neon<br>10<br>Argon<br>18<br>Argon                       | 84<br>Krypton<br>36                    | 131<br>Xenon<br>54                  | Radon<br>86           |                                    | 175<br><b>Lu</b><br>Lutetium<br>71                  | <b>Lr</b><br>Lawrencium<br>103                                              |
|---------------------------------------------|-------------------|------------|----------------------------------------------------------------|----------------------------------------|-------------------------------------|-----------------------|------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|
|                                             | VII               |            | 19<br><b>F</b> luorine<br>35.5<br><b>C1</b><br>Chlorine        | 80<br><b>Br</b><br>Bromine<br>35       | 127<br>I<br>Iodine<br>53            | At<br>Astatine<br>85  |                                    | 173<br><b>Yb</b><br>Ytterbium<br>70                 | Nobelium<br>102                                                             |
|                                             | 5                 | 1          | 16<br>8 Oxygen<br>32<br>32<br>16 Sulfur<br>16                  | 79<br>Selenium<br>34                   | 128<br><b>Te</b> lluňum<br>52       | Polonium<br>84        |                                    | 169<br><b>Tm</b><br>Thulium<br>69                   | Mendelevium<br>101                                                          |
|                                             | >                 |            | 14<br>Nitrogen<br>31<br>Phosphorus<br>15                       | 75<br><b>AS</b><br>Arsenic<br>33       | 122<br><b>Sb</b><br>Antimony<br>51  | Bismuth<br>83         |                                    | 167<br><b>Er</b><br>Erbium<br>68                    | Fermium<br>100                                                              |
|                                             | ≥                 |            | 6 Carbon<br>6 28 28<br>14 Silicon                              | 73<br><b>Ge</b><br>Germanium<br>32     | 119<br><b>Sn</b><br>207             | 20<br>Lead<br>82      |                                    | 165<br>Holmium<br>67                                | Einsteinium<br>99                                                           |
|                                             | ≡                 |            | 11<br><b>B</b><br>Boron<br>5<br>Auminium<br>13                 | 70<br><b>Ga</b><br>Galium<br>31        | 115<br>In<br>Indium<br>49<br>204    | <b>Thallium</b><br>81 |                                    | 162<br>Dy<br>Dysprosium<br>66                       | Cf<br>Californium<br>98                                                     |
| ints                                        |                   |            |                                                                | 65<br><b>Zn</b><br><sup>Zinc</sup>     | 112<br>Cadmium<br>48                | Mercury<br>80         |                                    | 159<br><b>Tb</b><br>Terbium<br>65                   | BK<br>Berkelium<br>97                                                       |
| The Periodic Table of the Elements<br>Group |                   |            |                                                                | 64<br><b>Cu</b><br><sup>Copper</sup>   | 108<br>AG<br>83iver<br>107          | Au<br>Gold<br>79      |                                    | 157<br><b>Gd</b><br>Gadolinium<br>64                | Cm<br><sup>Curium</sup><br>96                                               |
| : Table of th<br>Group                      |                   |            |                                                                | 59<br>Nickel<br>28                     | 106<br>Pd<br>Palladium<br>46        | Platinum<br>78        |                                    | 152<br><b>Eu</b><br>Europium<br>63                  | Americium<br>95                                                             |
| iodic Ta<br>Gre                             | <b>T</b> Hydrogen |            | 59<br><b>CO</b><br><sup>27</sup>                               | 103<br>Rhođium<br>45                   | Iridium<br>77                       |                       | 150<br><b>Sm</b><br>Samarium<br>62 | Plutonium<br>94                                     |                                                                             |
|                                             |                   | Hydrogen   |                                                                | 56<br><b>Fe</b><br>Iron<br>26          | 101<br><b>Ru</b><br>Ruthenium<br>44 | Osmium<br>76          |                                    | Promethium<br>61                                    | Neptunium<br>93                                                             |
|                                             |                   |            |                                                                | 55<br>Mn<br><sup>Manganese</sup><br>25 | Tc<br>Technetium<br>43              | Renium                |                                    | 144<br>Neodymium<br>60                              | 238<br><b>U</b><br>Uranium<br>92                                            |
|                                             |                   |            |                                                                | 52<br><b>Cr</b><br>Chromium<br>24      | 96<br><b>MO</b><br>Molybdenum<br>42 | Tungsten<br>74        |                                    | 141<br><b>Pr</b><br>Fraseodymium<br>59              | Protactinium<br>91                                                          |
|                                             |                   |            |                                                                | 51<br>Vanadium<br>23                   | 93<br>Niobium<br>41                 | Tantalum<br>73        |                                    | 140<br><b>Ce</b><br>Cerium<br>58                    | 232<br><b>Th</b><br>90                                                      |
|                                             |                   |            |                                                                | 48<br>Titanium<br>22                   | 91<br>Zr<br>Zirconium<br>40         | Hathium               |                                    |                                                     | nic mass<br>ool<br>nic) number                                              |
|                                             |                   |            |                                                                | 45<br><b>Sc</b><br>Scandium<br>21      | 89<br>Yttrium<br>39                 | Lanthanum<br>57 *     | Actinium<br>89 †                   | series<br>eries                                     | a = relative atomic mass<br>X = atomic symbol<br>b = proton (atomic) number |
|                                             | =                 |            | 9<br>Be<br>Berylium<br>4<br>24<br><b>Ng</b><br>Magnesium<br>12 | 40<br><b>Caa</b><br>catcium<br>20      | 88<br>Strontium<br>38<br>137        | Barium<br>56<br>226   | Radium<br>88                       | *58-71 Lanthanoid series<br>190-103 Actinoid series | р= ж<br>р= ж<br>р= ж                                                        |
|                                             | _                 |            | 7<br>Lithium<br>3<br>Lithium<br>23<br>23<br>23<br>23<br>11     | 39<br><b>K</b><br>Potassium<br>19      | 85<br><b>Rb</b><br>Rubidium<br>37   | Caesium<br>55         | <b>Fr</b><br>Francium<br>87        | 8-71 L <sup>(</sup><br>0-103 /                      | key<br>b                                                                    |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared wh reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwitting publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand na Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.