

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY		0620/	33
Paper 3 (Exten	ded)	May/June 20	14
		1 hour 15 minut	es
Candidates and	swer on the Question Paper.		

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use an HB pencil for any diagrams or graphs.Do not use staples, paper clips, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions. Electronic calculators may be used. A copy of the Periodic Table is printed on page 12. You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of **12** printed pages.

1 Choose a gas from the following list to answer the questions below. Each gas may be used once, more than once or not at all.

	ammonia	carbon dic	oxide ca	rbon monoxi	de f	luorine		
	hydrogen	krypton	nitrogen	propene	sulfu	dioxide		
(a)	It is a product of resp	iration						[1]
(b)	It polymerises to form	n a poly(alken	e)					[1]
(c)	It is a noble gas							[1]
(d)	It is the main compor	ent of air						[1]
(e)	It is a very reactive no	on-metal						[1]
(f)	It is used to kill micro	-organisms in	fruit juice					[1]
(g)	It burns to form water	as the only p	product					[1]
							[Tota	l: 7]

- 2 Explain each of the following in terms of the kinetic particle theory.
 - (a) The rate of most reactions increases at higher temperatures.

	[0]
 	 [3]

(b) A liquid has a fixed volume but takes up the shape of the container. A gas takes up the shape of the container but it does not have a fixed volume.

- **3** (a) Biological catalysts produced by microbes cause food to deteriorate and decay.
 - (i) What is the name of these biological catalysts?
 [1]
 (ii) Freezing does not kill the microbes. Suggest why freezing is still a very effective way of preserving food.

(b) Pea seeds grow in pods on pea plants.

Freshly picked pea seeds contain a sugar. The sugar can form a polymer.

Give the structural formula of the polymer and name the other product of this polymerisation reaction.

You may represent the sugar by the formula:

structural formula of the polymer

other product[3]

(c) Describe how the pea plant makes a sugar such as glucose.

[3] [Total: 9]

- 4 Iron from a blast furnace contains about 5% of the impurities carbon, silicon, phosphorus and sulfur. Most of this impure iron is used to make steels, such as mild steel, and a very small percentage is used to make pure iron.
 - (a) Calcium oxide and oxygen are used to remove the impurities from the iron produced in the blast furnace.
 - (i) State how these chemicals are manufactured.

(ii) Describe how these two chemicals remove the four impurities. Include at least one equation in your answer.

(b)	(i)	Describe the structure of a typical	metal such as iron.	You may include a diagram.
-----	-----	-------------------------------------	---------------------	----------------------------

	[2]
(ii)	Explain why pure iron is malleable.
(iii)	Mild steel is an alloy of iron and carbon. Suggest why mild steel is harder than pure iron.
	[Total: 14]

5 Ammonia is made by the Haber process.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

The forward reaction is exothermic. The conditions in the reaction chamber are:

- a pressure of 200 atmospheres,
- a catalyst of finely divided iron,
- a temperature of 400 to 450 °C.
- (a) What are the two advantages of using a high pressure? Give a reason for both.

	adv	antage 1
	reas	son
	adv	antage 2
	reas	son
		[4]
(b)		gher temperature would give a faster reaction rate. y is a higher temperature not used?
	VVII	y is a higher temperature not used?
		101
		[3]
(c)	(i)	Why is the iron catalyst used as a fine powder?
		[1]
	(ii)	Give two reasons why a catalyst is used.

(d) The equilibrium mixture leaving the reaction chamber contains 15% ammonia. Suggest how the ammonia could be separated from the mixture.

	boiling point/°C
hydrogen	-253
nitrogen	-196
ammonia	-33

[2	2]

(e) Ammonia is used to make nitrogen trifluoride, NF_3 . Nitrogen trifluoride is essential to the electronics industry. It is made by the following reaction.

Determine if the above reaction is exothermic or endothermic using the following bond energies and by completing the following table. The first line has been done as an example. Bond energy is the amount of energy, in kJ/mole, needed to break or make one mole of the bond.

bond	bond energy in kJ/mole
N-H	390
F-F	155
N-F	280
H–F	565

bond	energy change/kJ
N-H	(3 × 390) = 1170
F-F	
N-F	
H-F	

.....

.....[4]

[Total: 16]

0620/33/M/J/14

- (d) Cracking is used to obtain short-chain alkanes, alkenes and hydrogen from long-chain alkanes.
 - (i) Give a use for each of the three products listed above.

- (ii) Write an equation for the cracking of decane, $C_{10}H_{22}$, which produces two different alkenes and hydrogen as the only products.
 -[1]
- (e) Chlorine reacts with propane in a substitution reaction to form 1-chloropropane.

$$CH_3 - CH_2 - CH_3 + Cl_2 \rightarrow CH_3 - CH_2 - CH_2 - Cl + HCl$$

(i) What is the essential condition for the above reaction?

......[1]

(ii) There is more than one possible substitution reaction between chlorine and propane. Suggest the structural formula of a different product.

......[1]

[Total: 16]

www.sparkl.me

- 7 Aluminium is obtained from purified alumina, Al_2O_3 , by electrolysis.
 - (a) Alumina is obtained from the main ore of aluminium. State the name of this ore.
 -[1]
 - (b) Describe the extraction of aluminium from alumina. Include the electrolyte, the electrodes and the reactions at the electrodes.

[6]

- (c) Aluminium is resistant to corrosion. It is protected by an oxide layer on its surface. The thickness of this oxide layer can be increased by anodising.
 - (i) State a use of aluminium due to its resistance to corrosion.

(ii) Anodising is an electrolytic process. Dilute sulfuric acid is electrolysed with an aluminium object as the anode. The thickness of the oxide layer is increased. Complete the equations for the reactions at the aluminium anode.

0620/33/M/J/14

 $\dots OH^{-} \rightarrow O_2 + 2H_2O + \dots e^{-}$

 $\dots Al + \dots Al_2O_3$

[Total: 12]

[4]

	0	2 Helium	20 Neon 10 Neon 40 Ar	84 Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	١١٨		19 9 Fluorine 9 35.5 C1 17 Chlorine	80 Br 35	127 lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102
	5		16 8 Oxygen 8 32 32 8 Suffur 16	79 Se Selenium 34	128 Te Tellunium 52	Polonium 84		169 Tm Thulium 69	Mad Mendelevium 101
	>		14 Nitrogen 7 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi smuth 83		167 Er Erbium 68	Fm Fermium 100
	2		6 Carbon 6 28 28 28 28 28	73 Ge Germanium 32	119 Sn	207 Pb Lead 82		165 HO Holmium 67	Einsteinium 99
	≡		11 5 BB Boron 5 27 27 Aluminium 13	70 Ga Galium 31	115 1 1 Indium 49	204 T 1 Thallium		162 Dysprosium 66	Cf Californium 98
				65 Zn 30 ^{Zinc}	112 Cadmium 48	201 Mercury 80		159 Tb ^{Terbium} 65	BK Berkelium 97
				64 Copper 29	108 Ag Silver 47	197 Au Gold 79		157 Gd Gadolinium 64	Curium Ge
Group				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
Gr			_	59 CO Cobait	103 Rh Rhodium 45	192 		150 Sm Samarium 62	Putonium 94
		L Hydrogen		56 Fe Iron 26	101 Rut Ruthenium 44	190 OS Osmium 76		Promethium 61	Neptunium 03
				55 Manganese 25	43 Tec	186 Re Rhenium 75		144 Neodymium 60	238 Uranium 92
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 V Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91
				51 V Vanadium 23	93 Niobium 41	181 Ta ^{Tantalum} 73		140 Ce ^{Cerium}	232 Thorium 90
				48 Titanium 22	91 Zr Zirconium 40	178 Hafnium 72	,	1	nic mass Ibol nic) number
			[45 SC Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	227 AC 89 ↑	d series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Beryllium 4 Magnesium 12	40 Calcium 20	88 Strontium 38	137 Baa Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	ة × ä
	_		Z3 23 Sodium	39 F Potassium 19	85 Rb Rubidium 37	133 Csesium Caesium	Fr Francium	-71 L -103 .	ه Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared wh reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingl publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.