

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

	CANDIDATE NAME			
_	CENTRE NUMBER		CANDIDATE NUMBER	
*	CHEMISTRY			0620/32
9633	Paper 3 Theory	(Core)		May/June 2016
80272	Candidates ans	wer on the Question Paper.		1 hour 15 minutes
30272*	Additional Mater	rials: No Additional Materials are required.		
	READ THESE I	NSTRUCTIONS FIRST		

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use an HB pencil for any diagrams or graphs.Do not use staples, paper clips, glue or correction fluid.DO NOT WRITE IN ANY BARCODES.

Answer **all** questions. Electronic calculators may be used. A copy of the Periodic Table is printed on page 20. You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Ce

This document consists of **19** printed pages and **1** blank page.

(a) Answer the following questions about these substances.

.....

(iii) Determine the simplest formula for substance D.

......[1]

2

www.sparkl.me

[1]

(b)	Phosp	horus has one naturally occurring isotope.	
	(i)	Determine the number of neutrons present in one atom of the isotope $^{31}_{15}$ P.	
			[1]
	(ii)	How many electrons are there in the outer shell of one phosphorus atom?	
			[1]
	(iii)	Determine the total number of electrons present in a phosphorus molecule, P_4 .	
			[1]
(c)	What	type of oxide is phosphorus(V) oxide?	
	Explai	n your answer.	
			[2]
		[Tot	al: 9]

2 (a) The table describes the ease of reduction of some metal oxides with carbon.

metal oxide	ease of reduction on heating
lead oxide	moderate heating at 200 °C needed
nickel oxide	high temperature at 750 °C needed
titanium oxide	very high temperatures above 1700 °C needed
zinc oxide	very high temperature at 900 °C needed

Put the metals in order of their reactivity. Put the least reactive metal first.

least reactive —	► most reactive

[2]

(b) Aluminium is extracted by the electrolysis of molten aluminium oxide.

	Predic	t the products of this electrolysis at the	
	positiv	ve electrode (anode),	
	negati	ve electrode (cathode)	[2]
(c)	When forme	iron reacts with dilute hydrochloric acid, an aqueous solution containing iron(II) ion: d.	s is
	Descr	ibe a test for iron(II) ions.	
	test		
	result		[2]
(d)	Iron ru	usts very easily.	
	(i)	Complete the following sentence.	
		Iron rusts in the presence of	[2]

(ii) Describe **one** method of rust prevention and explain how it works.

[Total: 10]

3 Sulfur dioxide reacts with excess oxygen to form sulfur trioxide.

 $2SO_2(g) + O_2(g) \Rightarrow 2SO_3(g)$

(a) What is the meaning of the symbol \rightleftharpoons ?

.....[1]

(b) The energy level diagram for the reaction is shown.

Is this reaction exothermic or endothermic?

Give a reason for your answer.

.....[1]

(c) The graph shows how the percentage yield of sulfur trioxide changes with temperature when the pressure is kept constant.

(f) Sulfur dioxide reacts with magnesium.

2Mg + SO_2 \rightarrow 2MgO + S

Which substance is reduced in this reaction?

Explain your answer.

.....[2]

(g) Sulfur dioxide reacts with water to form sulfurous acid, H₂SO₃. Sulfurous acid reacts with hydrogen sulfide to form water and sulfur.

Complete the chemical equation for this reaction.

 $H_2SO_3 \ + \ 2H_2S \ \rightarrow \H_2O \ + \ 3S$

[1]

[Total: 10]

- 4 Alkanes, alkenes and alcohols are three different homologous series of organic compounds.
 - (a) What is meant by the term *homologous series*?
 - (b) The structures of some alkanes, alkenes and alcohols are shown below.

(c) The table gives some information about four alcohols.

alcohol	molecular formula	density in g/cm ³	boiling point /°C
methanol	CH₄O	0.793	
	C ₂ H ₆ O	0.789	79
propanol	C ₃ H ₈ O	0.804	98
butanol	C ₄ H ₁₀ O	0.810	117

(i) Give the name of the alcohol with the formula C_2H_6O .

(ii) A student predicts that the density of the alcohols increases as the number of carbon atoms increases.Does the data in the table support this prediction?

Explain your answer.

(iii) Suggest a value for the boiling point of methanol.

- (d) The alcohol with the formula C_2H_6O burns in a limited supply of air to form carbon monoxide and water.
 - (i) Complete the chemical equation for this reaction.

$$C_2H_6O + 2O_2 \rightarrow \dots CO + \dots H_2O$$

[2]

(ii) State an adverse effect of carbon monoxide on health.

......[1]

[Total: 15]

- 5 Chlorine, bromine and iodine are halogens.
 - (a) The melting point of bromine is -7 °C. The boiling point of bromine is +59 °C.

Deduce the state of bromine at +6 °C. Explain your answer.

.....[2]

- - (ii) Suggest why iodine does **not** react with aqueous potassium bromide.

.....[1]

(c) The structure of the dye Lithol fast yellow is shown.

Complete the table and calculate the relative molecular mass of Lithol fast yellow.

type of atom	number of atoms	atomic mass	
carbon	13	12	13 × 12 = 156
hydrogen	10	1	10 × 1 = 10
nitrogen	4	14	4 × 14 = 56
oxygen			
chlorine			

relative molecular mass =

- (d) Chromatography is used to separate a mixture of dyes.
 - (i) Draw a cross on the diagram to show where the mixture of dyes is placed at the start of the chromatography.

(ii) Suggest a suitable solvent that could be used.
[1]
(iii) Describe what you would observe as the experiment proceeds.
[1]
[1]
[1]

- 6 Sodium is a metal in Group I of the Periodic Table.
 - (a) Describe some physical and chemical properties of sodium. In your answer include
 - any observations about the reactions of sodium,
 - at least one word equation.

[5]

(b) The presence of sodium in compounds can be confirmed using a flame test.

Describe how a flame test is carried out and give the result of the test for sodium.

- (c) Aqueous sodium hydroxide is strongly alkaline.
 - (i) Which one of the following values is the pH of a strongly alkaline solution?Put a ring around the correct answer.

pH1 pH2 pH7 pH13

[1]

(ii) Describe how you could use litmus to show that aqueous sodium hydroxide is alkaline.

.....[2]

(d) Sodium sulfite, Na_2SO_3 , reacts with hydrochloric acid.

 $Na_2SO_3(s) \ + \ 2HC{\it l}(aq) \ \rightarrow \ 2NaC{\it l}(aq) \ + \ SO_2(g) \ + \ H_2O(l)$

Explain why this reaction could have an adverse effect on health if not carried out in a fume cupboard.

.....[2]

[Total: 12]

7 When magnesium reacts with hydrochloric acid, the products are aqueous magnesium chloride and hydrogen.

Mg(s) + 2HC $l(aq) \rightarrow MgCl_2(aq) + H_2(g)$

A student used the apparatus shown to follow the progress of this reaction.

(a) Complete the diagram by putting the correct labels in the boxes.

[2]

(b) The student conducted two experiments using the same mass of magnesium in each experiment and two different concentrations of hydrochloric acid. The hydrochloric acid was in excess. All other conditions were kept constant.

The student measured the volume of hydrogen produced over a period of time. The graph shows the results.

(i) Which concentration of hydrochloric acid gave the faster initial rate of reaction?

Use the graph to explain your answer.

(ii) Draw a curve **on the graph on page 16** to show how the volume of hydrogen would change if a third experiment was carried out using 1.5 mol/dm³ hydrochloric acid and the same mass of magnesium.

[2]

(c) Give one use of hydrogen.

.....[1]

(d) Explosions have occasionally been reported where tiny particles of metal dust escape into the air.

Explain why metal dust can form an explosive mixture with air.

.....

......[1]

[Total: 7]

- - (c) A student heated a piece of solder carefully. The diagram shows what happens to the solder.

Use the kinetic particle theory to describe and explain what happens to the solder as it changes state.

(d) When heated above 1744 °C, lead forms a vapour.

Describe a general property of a vapour (gas) which is not shown by a solid.

......[1]

BLANK PAGE

d
Ľ.
E
ร
ŝ
n a
Å
Ĕ
g
e
Ę
Ľ
g
Ĕ
e
ļ
E
ŏ
Ţ
g
٦
đ
4
0
as
σ
N
ar
Ľ
с Ф
₩,
Ĕ
Ð
č
Ļ
Ö
e
amu
olume
volume
The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.)

								(
								Grc	Group								
_	=											≡	≥	>	⋝	II>	\III
							-										2
							Т										He
				Key			hydrogen 1										helium 4
e	4			atomic number		_						5	9	7	8	6	10
:	Be		ato	atomic symbol	loc						_	В	U	z	0	ш	Ne
lithium 7	beryllium 9		rela	name relative atomic mass	SS							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
- 1	12	_										13	14	15	16	17	18
Na	Mg											Ρl	Si	٩	S	Cl	Ar
sodium 23	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
×	Ca	Sc	F	>	ບັ	Mn	Ъe	ပိ	Ī	Cu	Zn	Ga	Ge	As	Se	Ъ	Ъ
potassium 39	calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 59	nickel 59	copper 64	zinc 65	gallium 70	germanium 73	arsenic 75	selenium 79	bromine 80	krypton 84
37	38	39	40		42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	പ്	≻	Zr		Mo	Ц	Ru	Rh	Ъd	Ag	Cd	In	Sn	Sb	Те	I	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57-71	72		74	75	76	17	78	79	80	81	82	83	84	85	86
S	Ba	lanthanoids	Ηf	Та	8	Re	Os	Ir	£	Au	Hg	1T	Ър	Bi	Ро	At	Rn
caesium 133	barium 137		hafnium 178	tantalum 181	tungsten 184	rhenium 186	osmium 190	iridium 192	platinum 195	gold 197	mercury 201	thallium 204	lead 207	bismuth 209	polonium I	astatine -	radon -
87	88	89-103	104	105	106	107	108	109		111	112		114		116		
F	Ra	actinoids	Rf	Db	Sg	Вh	Hs	Mt	Ds	Rg	C		14		Ľ		
francium -	radium -		rutherfordium -	dubnium –	seaborgium -	bohrium –	hassium -	meitnerium -	darmstadtium -	roentgenium -	copernicium -		flerovium -		livermorium –		
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lanthanoids	sp	La		ካ	PN	Pm	Sm	Eu	Ъд	Tb	DV	Р	ц	Tm	٩Y	Lu	
		lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium -	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175	
		89	06	91		93	94	95	96	97	98	66		101	102	103	
actinoids		Ac		Ра		dN	Pu	Am	СЗ	¥	ç	Еs		Md	No	Ļ	
		actinium -	thorium 232	protactinium 231	uranium 238	neptunium -	plutonium -	americium -	curium	berkelium -	californium -	einsteinium -	fermium -	mendelevium -	nobelium -	lawrencium -	

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced with a second seco

The Periodic Table of Elements