

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CHEMISTRY		0620/31
Paper 3 (Exten	ded)	October/November 2011
		1 hour 15 minutes
Candidates and	swer on the Question Paper.	
No Additional N	Naterials are required.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
1				
2				
3				
4				
5				
6				
7				
Total				

This document consists of **15** printed pages and **1** blank page.

UNIVERSITY of CAMBRIDGE International Examinations

BLANK PAGE

carbon monoxide lithium oxide aluminium oxide nitrogen dioxide strontium oxide (a) (i) Which of the above oxides will react with hydrochloric acid but not with aqueous sodium hydroxide?[1] (ii) Which of the above oxides will react with aqueous sodium hydroxide but not with hydrochloric acid? (iii) Which of the above oxides will react with both hydrochloric acid and aqueous sodium hydroxide? (iv) Which of the above oxides will not react with hydrochloric acid or with aqueous sodium hydroxide? (b) Two of the oxides are responsible for acid rain. Identify the two oxides and explain their presence in the atmosphere.[5]

sulfur dioxide

1	This question	is	concerned	with	the	following	oxides.
---	---------------	----	-----------	------	-----	-----------	---------

(c)	Lith	ium oxide is an ionic compound.	For Examiner's Use
	(i)	Identify another ionic oxide in the list on page 3.	
		[1]	
	(ii)	Draw a diagram which shows the formula of lithium oxide, the charges on the ions and the arrangement of the valency electrons around the negative ion. Use x to represent an electron from an atom of oxygen. Use o to represent an electron from an atom of lithium.	

[2]

[Total: 12]

Two	imp	portant greenhouse gases are methane and carbon dioxide.	For Examiner's Use
		hane is twenty times more effective as a greenhouse gas than carbon dioxide. The hane in the atmosphere comes from both natural and industrial sources.	030
	(i)	Describe two natural sources of methane.	
		[2]	
	(ii)	Although methane can persist in the atmosphere for up to 15 years, it is eventually removed by oxidation. What are the products of this oxidation?	
		v do the processes of respiration, combustion and photosynthesis determine the centage of carbon dioxide in the atmosphere?	
	•••••		
	•••••	[4]	

[Total: 8]

www.sparkl.me

3 Aluminium is extracted by the electrolysis of a molten mixture of alumina, which is aluminium oxide, and cryolite.

For Examiner's Use

For Reversible reactions can come to equilibrium. The following are three examples of types of 4 Examiner's gaseous equilibria. Use $A_2(g) + B_2(g) \rightleftharpoons 2AB(g)$ reaction 1 $A_2(g) + 3B_2(g) \rightleftharpoons 2AB_3(g)$ reaction 2 $2AB_2(g) \rightleftharpoons 2AB(g) + B_2(g)$ reaction 3 (a) Explain the term equilibrium. (b) The following graphs show how the percentage of products of a reversible reaction at equilibrium could vary with pressure. For each graph, decide whether the percentage of products decreases, increases or stays the same when the pressure is increased, then match each graph to one of the above reactions and give a reason for your choice. (i) % product at equilibrium 0 0 pressure effect on percentage of products reaction reason (ii) % product at equilibrium 0 0 pressure effect on percentage of products reaction reason www.sparkl.me

© UCLES 2011

www.sparkl.me

© UCLES 2011

5 The rate of the reaction between iron and aqueous bromine can be investigated using the apparatus shown below.

For Examiner's Use

(a) A piece of iron was weighed and placed in the apparatus. It was removed at regular intervals and the clock was paused. The piece of iron was washed, dried, weighed and replaced. The clock was restarted.

This was continued until the solution was colourless.

The mass of iron was plotted against time. The graph shows the results obtained.

(iii)	Describe how you could find out if the rate of this reaction depended on the speed of stirring.	For Examiner's Use
	[2]	
• •	n has two oxidation states +2 and +3. There are two possible equations for the redox action between iron and bromine.	
	Fe + $Br_2 \rightarrow Fe^{2+} + 2Br^-$	
	$2\text{Fe} + 3\text{Br}_2 \rightarrow 2\text{Fe}^{3+} + 6\text{Br}^-$	
(i)	Indicate, on the first equation, the change which is oxidation. Give a reason for your choice.	
	[2]	
(ii)	Which substance in the first equation is the reductant (reducing agent)?	
	[1]	
(c) De	scribe how you could test the solution to find out which ion, Fe ²⁺ or Fe ³⁺ , is present.	
	[3]	
	[Total: 13]	

Some h	ydroxides, nitrates and carbonates decompose when heated.	
(a) (i)	Name a metal hydroxide which does not decompose when heated.	
(ii)	[1] Write the equation for the thermal decomposition of copper(II) hydroxide.	
(iii)	Suggest why these two hydroxides behave differently.	
	[1]	
(b) (i)	Metal nitrates, except those of the Group 1 metals, form three products when heated. Name the products formed when zinc nitrate is heated.	
(ii)	Write the equation for the thermal decomposition of potassium nitrate.	
	ere are three possible equations for the thermal decomposition of sodium Irogencarbonate.	Í
	$aHCO_3(s) \rightarrow Na_2O(s) + 2CO_2(g) + H_2O(g)$ equation 1	
	$HCO_{3}(s) \rightarrow NaOH(s) + CO_{2}(g) \qquad \text{equation 2}$ aHCO_{3}(s) $\rightarrow Na_{2}CO_{3}(s) + CO_{2}(g) + H_{2}O(g) \qquad \text{equation 3}$	
The	e following experiment was carried out to determine which one of the above is the rect equation.	ţ
	nown mass of sodium hydrogencarbonate was heated for ten minutes. It was then wed to cool and weighed.	I
Ma	sults ss of sodium hydrogencarbonate = 3.36 g ss of the residue = 2.12 g	
<i>M</i> _r 1	for NaHCO ₃ = 84 g; M_r for Na ₂ O = 62 g; M_r for NaOH = 40 g for Na ₂ CO ₃ = 106 g	
(i)	Number of moles of NaHCO ₃ used =[1]	

www.sparkl.me

For

Examiner's Use

(ii)	If residue is Na_2O , number of moles of $Na_2O = \dots$	For Examiner's Use
	If residue is NaOH, number of moles of NaOH =	000
	If residue is Na_2CO_3 , number of moles of $Na_2CO_3 = \dots$ [2]	
(iii)	Use the number of moles calculated in (i) and (ii) to decide which one of the three equations is correct. Explain your choice.	
	[2]	
	[Total: 13]	

www.sparkl.me

	0	H Helium	20 Neon Neon Argon	84 Kr Krypton 36	131 Xe Xenon	Radon ^{Radon}	175 Lu 1 71 Z Lawrendum 103
	٨I	N	19 F 9 35.5 C C C 1 10 10 10 10 10 10 10 10 10 10	80 Br Bromine 35	127 I fodine 53	At Astatine 86	173 Ybb 70 Notethum 102 102 102
	>		8 Oxygen 6 Sultur 16 16 16 16 16 16 16 16 16 16 16 16 16	79 Selenium 34	128 Telluñum 52	B4 Palonium 84	69 Thullum 69 Mendelevium 101
	>		14 Nitrogen 7 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83	167 Ertium 68 Famium 100
	≥		6 Carbon 6 28 28 28 14 Silicon	73 Ge Germanium 32	119 Sn	207 P b 82 Lead	165 Hohmium 67 Einsteinlum 99
	≡		11 B Boron 5 Auminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 7 81	162 Dysprosium 66 Cf Californium 88
ents				65 Zn 30	112 Cadmium 48	80 Mercury 201	159 159 65 Berkeltum 97
I ne Periodic lable of the Elements Group				64 Cu Copper 29	108 Ag Silver 47	197 Au ^{Gold}	157 Gd cadolinum 64 Cm 96
Group				59 Nickel 28	106 Pd Palladium 46	195 Platinum 78	152 Eu 63 Europium 63 Amenduum 95
			7	59 Co 27	103 Rh Rhodium 45	192 Ir 77	150 Samarium 62 Pluonium 94
		Hydrogen		56 Fe Iron	101 Ru Ruthenium	190 Os 76	Promethium 61 Neptunium 93
				55 Mn ^{Manganese} 25	Tc Technetium 43	186 Re Rhenium 75	144 Neodymium 60 238 238 92 Utanium
				52 Cr Chromium 24	96 MO Molybdenum 42	184 V 74 74	141 Praseodymium 59 Protactinium
				51 Vanadium 23	93 Niobium 41	181 Ta 73 73	140 Ce 58 Cerium 58 232 232 90
				48 Titanium 22	91 Zr Zirconium 40	178 Hatinium 72	mic mass bool nic) number
			[]	45 Scandium 21	39 Yttium 39	139 Lanthanum 57 * *	89 1 id series l series a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Beryllium 4 24 Magnestum 12	40 Calcium 20	88 Strontium 38	137 Ba Barium 56 226 Radium	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	-		7 Lithium 3 Lithium 23 23 23 23 11 Sodium	39 K Potassium 19	85 Rb Rubidium 37	133 Csessium 55 Francium	*58-71 L *58-71 L 190-103 Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared wh reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwitting publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand na Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.