

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CHEMISTRY		0620/33
Paper 3 (Extended	()	October/November 2011
		1 hour 15 minutes
Candidates answe	er on the Question Paper.	
No Additional Mate	erials are required.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
3			
4			
5			
6			
7			
Total			

This document consists of **11** printed pages and **1** blank page.

UNIVERSITY of CAMBRIDGE International Examinations www.sparkl.me

(a)	(a) Choose an element from the Periodic Table to match each description. You may give either the name or the symbol.						
	(i)	It is the most reactive metal[1]					
	(ii)	It is the only non-metal which is a liquid at r.t.p [1]					
(iii)	An isotope of this element is used as a fuel in nuclear reactors					
((iv) This Group VII element is a solid at r.t.p. [1						
	(v) This element is in Group V and Period 4						
((vi) This unreactive gas is used to fill lamps [
(b)	(b) Predict the formula of each of the following compounds.						
	(i) germanium oxide						
	(ii) tellurium bromide						
(c)	c) Give the formula of each of the following ions.						
	(i)	strontium					
	(ii)	fluoride[2]					
		[Total: 10]					

Use your copy of the Periodic Table to answer these questions.

1

www.sparkl.me

For Examiner's Use

	3	
	a complex carbohydrate, is a natural macromolecule or polymer. e formed from its monomer by condensation polymerisation.	For Examin Use
(a) (i)	Explain the terms:	
	monomer	
	condensation polymerisation	
	[2]	
(ii)	Draw the structural formula of starch to include three monomer units.	
	Glucose, the monomer, can be represented as HOOH.	
	[3]	
wai	[3] arch can be hydrolysed to simple sugars by heating with dilute sulfuric acid or by rming with a dilute solution of saliva. The reaction can be catalysed by H ⁺ ions from acid or by the enzymes in saliva.	
wai	arch can be hydrolysed to simple sugars by heating with dilute sulfuric acid or by rming with a dilute solution of saliva. The reaction can be catalysed by H ⁺ ions from	
wai the	arch can be hydrolysed to simple sugars by heating with dilute sulfuric acid or by rming with a dilute solution of saliva. The reaction can be catalysed by H ⁺ ions from acid or by the enzymes in saliva.	
wai the (i)	arch can be hydrolysed to simple sugars by heating with dilute sulfuric acid or by rming with a dilute solution of saliva. The reaction can be catalysed by H ⁺ ions from acid or by the enzymes in saliva. What is an enzyme?	
wai the	arch can be hydrolysed to simple sugars by heating with dilute sulfuric acid or by rming with a dilute solution of saliva. The reaction can be catalysed by H ⁺ ions from acid or by the enzymes in saliva. What is an enzyme?	
wai the (i)	arch can be hydrolysed to simple sugars by heating with dilute sulfuric acid or by rming with a dilute solution of saliva. The reaction can be catalysed by H ⁺ ions from acid or by the enzymes in saliva. What is an enzyme? [1] Explain why, if the saliva/starch mixture is heated above 70 °C, the hydrolysis stops. [1] The complete acid-catalysed hydrolysis of starch forms only glucose. The partial acid-catalysed hydrolysis of starch forms a mixture of sugars which	
wai the (i) (ii)	arch can be hydrolysed to simple sugars by heating with dilute sulfuric acid or by rming with a dilute solution of saliva. The reaction can be catalysed by H ⁺ ions from acid or by the enzymes in saliva. What is an enzyme? (1] Explain why, if the saliva/starch mixture is heated above 70 °C, the hydrolysis stops. (1] The complete acid-catalysed hydrolysis of starch forms only glucose.	
wai the (i) (ii)	arch can be hydrolysed to simple sugars by heating with dilute sulfuric acid or by rming with a dilute solution of saliva. The reaction can be catalysed by H ⁺ ions from acid or by the enzymes in saliva. What is an enzyme? [1] Explain why, if the saliva/starch mixture is heated above 70 °C, the hydrolysis stops. [1] The complete acid-catalysed hydrolysis of starch forms only glucose. The partial acid-catalysed hydrolysis of starch forms a mixture of sugars which	
wai the (i) (ii)	arch can be hydrolysed to simple sugars by heating with dilute sulfuric acid or by training with a dilute solution of saliva. The reaction can be catalysed by H* ions from acid or by the enzymes in saliva. What is an enzyme? [1] Explain why, if the saliva/starch mixture is heated above 70 °C, the hydrolysis stops. [1] The complete acid-catalysed hydrolysis of starch forms only glucose. The partial acid-catalysed hydrolysis of starch forms a mixture of sugars which includes glucose. Describe how you could identify the different sugars in this mixture.	
wai the (i) (ii)	arch can be hydrolysed to simple sugars by heating with dilute sulfuric acid or by rming with a dilute solution of saliva. The reaction can be catalysed by H ⁺ ions from acid or by the enzymes in saliva. What is an enzyme? [1] Explain why, if the saliva/starch mixture is heated above 70 °C, the hydrolysis stops. [1] The complete acid-catalysed hydrolysis of starch forms only glucose. The partial acid-catalysed hydrolysis of starch forms a mixture of sugars which	

0620/33/O/N/11

For	
Examiner's	

The rea	ions in this question are all examples of photochemical reactions.				
(a) Exp	plain the phrase photochemical reaction.				
cor	iny millions of years ago, the Earth's atmosphere was rich in carbon dioxide and intained negligible amounts of oxygen. After the appearance of green plant-like cteria, the proportions of these two gases in the atmosphere changed.				
(i)	What are the approximate percentages of these two gases in the atmosphere now?				
	carbon dioxide =[1]				
	oxygen =[1]				
(ii)	Explain how the green plant-like bacteria changed the composition of the atmosphere.				
(c) The	e reduction of silver(I) bromide to silver is the basis of film photography.				
	$2AaBr \rightarrow 2Aa + Br$				

6

For

Examiner's Use

 $2AgBr \rightarrow 2Ag + Br_2$ white black

An opaque object is placed on a piece of paper coated with silver(I) bromide which is then exposed to a bright light. The light is switched off and the opaque object removed.

5

- 6 Nickel is a transition element.
 - (a) Predict three differences in the chemical properties of nickel and barium.

.....[3]

(b) Nickel ores are converted into nickel(II) oxide. This can be reduced to impure nickel by heating with carbon. The nickel is purified by the following reversible reaction.

 $Ni(s) + 4CO(g) \rightleftharpoons Ni(CO)_4(g)$

nickel carbonyl

(i) Impure nickel is heated at 60 °C. The forward reaction occurs.

 $Ni(s) + 4CO(g) \rightarrow Ni(CO)_4(g)$ impure

The nickel carbonyl, a gas, moves into a hotter chamber at 200 °C. The backward reaction occurs and the nickel carbonyl decomposes.

 $Ni(CO)_4(g) \rightarrow Ni(s) + 4CO(g)$ pure

Is the forward reaction exothermic or endothermic? Give a reason for your answer.

(ii) Explain why the forward reaction is favoured by an increase in pressure. [2]

(iii) Suggest what happens to the impurities.

......[1]

For

Examiner's Use (iv) Suggest another method of refining nickel. Give a brief description of the method which you have suggested. A labelled diagram is acceptable.

For Examiner's Use

[4]

[Total: 12]

www.sparkl.me

- The alkenes are a series of unsaturated hydrocarbons. They have the general molecular 7 Examiner's formula $C_n H_{2n}$.
 - (a) Deduce the molecular formula of an alkene which has a relative molecular mass of 126. Show your working.

.....

(b) The structural formula of propene is drawn below.

(i) Draw a diagram showing the arrangement of the valency electrons in one molecule of this covalent compound. Use x to represent an electron from an atom of carbon. Use o to represent an electron from an atom of hydrogen.

(ii) Draw the structure of the polymer formed from propene

[2]

[3]

For

Use

Use the data in the table to show that the following reaction is exothermic. н Н Н Н Н Н —Н =Ċ \rightarrow H-Н C -H н Н Н Н Н [3] (c) This question is concerned with some of the addition reactions of but-1-ene. (i) Name the product formed when but-1-ene reacts with water.[1] (ii) Complete the equation. $CH_3 - CH_2 - CH = CH_2 + Br_2 \rightarrow \dots$ [2] (iii) Deduce the formula of the compound which reacts with but-1-ene to form 1-iodobutane. [Total: 14]

(iii) Bond energy is the amount of energy, in kJ, which must be supplied to break one

bond energy

in kJ/mol +436

+610

+346

+415

For Examiner's Use

0620/33/O/N/11

www.sparkl.me

10

bond

 $\frac{H-H}{C=C}$

C-C

C-H

mole of the bond.

BLANK PAGE

11

www.sparkl.me

	0	4 Helium	20 Neon 10 Ad Argon 18 Argon	84 Krypton 36	131 Xe S4 Xenon	Radon 86	175 Lutetium 71 Lawrendum 103
	M		19 9 Fluorine 35.5 C1 C1 C1	80 Br Bromine	127 I fodine 53	At Astatine 85	173 Yb 70 70 Nobelium 102
	>		16 B Oxygen 32 32 Sulfur 16	79 Se Selenium 34	128 Te llurium 52	Polonium 84	169 Tmulium 69 Mendelevium 101
			14 Nitrogen 31 Phosphorus 15	75 AS Arsenic 33	122 Sb 51 209	Bismuth 83	167 Ertium 68 Fm Fm 100
	≥	-	6 Carbon 6 28 28 14 Silicon	73 Ge Germanium 32	119 Sn 50 207	82 Lead	165 Hohmuum 67 Einsteinium 99
	≡		11 B Boron 27 Aluminium 13	70 Ga Gallium 31	115 Ind Indium 204	TT Thallium 81	162 Dysprosium 66 Cf Californium
ents				65 Zn 30 ^{Zinc}	112 Cadmium 48 201	Mercury 08	159 Tb 5 Berkelium 97
The Periodic Table of the Elements Group				64 Cu ^{Copper}	108 AG 47 197	Au Gold	157 Gd Gd 64 64 Curium 96
ble of th oup	Group			59 Nickel 28	106 Palladium 195	Platinum 78	152 Eu 63 Americium 95
iodic Ta Gr				59 CO 27	103 Rh odium 45 192	Ir Indium 77	150 Samartum 62 Plutonium 94
The Per		Hydrogen 1		56 Fe Iron 26	101 Ru thenium 44 190	Osmium 76	61 Reprunium 93 89 93
				55 Mn ^{Manganese} 25	Technetium 43 186	Rhenium 75	144 Neodymium 60 238 238 Uanium
				52 Cr Chromium 24	96 Mo Molybdenum 42 184	Tungsten 74	141 Praseodymium 59 Protactinium 91
				51 V Vanadium 23	93 Niobium 41	Tantalum 73	140 Centum 58 232 232 232 1hortum 90
				48 Titanium 22	91 Zr Zirconium 40 178	Hathium 72	nic mass bol
				45 Sc Scandium 21	89 Vttrium 39 139	Lanthanum 57 *	89 1 0id series 1 I series a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Be Beryllium 4 24 Ng Magnesium 12	40 Calcium 20	88 Strontium 38 137	Barium 56 Barium 226 Radium	<pre>*58-71 Lanthanoid series *58-71 Lanthanoid series 190-103 Actinoid series Key key b b b b c c a a a relative a x = atomics b b b c c a b b c b c a b b c b c a b c b c</pre>
	-		7 Lithium 23 23 23 23 23 23 23 23 23 23 23 23 23	39 K Potassium 19	85 Rb ^{Rubidium} 37		*58-71 L ⁸⁷ *58-71 L ² 190-103 / Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared wh reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwitting publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand na Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

12