

Cambridge International AS & A Level

	CANDIDATE NAME			
	CENTRE NUMBER		CANDIDATE NUMBER	
* 9 1	CHEMISTRY			9701/22
0 1	Paper 2 AS Leve	el Structured Questions		May/June 2023
0 0				1 hour 15 minutes
* 9 1 0 1 9 6 5 1 5 9	You must answe	er on the question paper.		
0	No additional m	aterials are needed		

No additional materials are needed.

INSTRUCTIONS

- Answer all questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page. •
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid. •
- Do not write on any bar codes. •
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets []. •

This document has 16 pages. Any blank pages are indicated.

- The Periodic Table is printed in the question paper. •
- Important values, constants and standards are printed in the question paper.

1 The melting points of some solids are shown in Table 1.1.

solid	melting point/K
magnesium	923
phosphorus	317
sodium chloride	1074
sulfur	392

Table 1.1

- (a) (i) State the type of bonding present in magnesium and in sodium chloride.
- bonding in magnesium bonding in sodium chloride [1] (ii) Explain the difference in the melting points of magnesium and sodium chloride.[1] (iii) Explain the difference in the melting points of phosphorus and sulfur in terms of structure and bonding. (b) (i) Define electronegativity.[1] (ii) Explain why electronegativity increases across a period.

(iii) Name the strongest intermolecular force that exists between NH₃(I) molecules.

	[1]]
--	-----	---

(iv) Draw a diagram to show the formation of the strongest intermolecular force between **two** molecules of NH₃(I).

Include any relevant lone pairs of electrons and dipoles.

(v) The melting points of ice and ammonia are shown in Table 1.2.

solid	melting point/K	
ice	273	
ammonia	195	

Suggest two reasons for the difference in the melting points of ice and ammonia.

[Total: 12]

- 2 Chlorine is a reactive element. It forms many compounds.
 - (a) (i) Complete Table 2.1 to show the maximum oxidation number of the elements Na to P in their chlorides.

Table 2.1

	6	element	Na	Mg	Al	Si	Р	
	r	maximum oxidation number						
	(ii)	State what determines the r	maximum	oxidation	number of	elements	in Period	[1] 3.
								[1]
(b)	An	excess of cold water is addee	d to the ch	nloride of s	ilicon.			
	(i)	Write an equation for the resilicon.	eaction be	tween an	excess of	cold wate	er and the	chloride of
								[1]
	(ii)	Suggest the pH of the solut	ion produc	ced in (b)(i).			
								[1]
(c)	An	excess of cold water is adde	d to the ch	nloride of p	hosphoru	S.		
	(i)	Write an equation for the representation phosphorus.	eaction be	tween an	excess of	cold wate	er and the	chloride of
								[1]
	(ii)	Suggest the pH of the solut	ion produc	ced in (c)(i).			
(d)	(i)	Write an equation for the re						[1]
								[1]
	(ii)	Write an equation for the re	action of c	chlorine wi	th hot Na	DH(aq).		
								[1]

- (e) Bleach is used as a cleaning product to kill bacteria. It is made by adding compounds like sodium chlorate(I), NaC1O, to water.
 - (i) Identify the formula of the ion present in bleach that kills bacteria.

......[1]

(ii) Sodium chlorate(I), NaC1O, reacts with hydrogen peroxide to produce sodium chloride, water and oxygen gas.

Construct an equation for this reaction.

......[1]

(iii) A sample of bleach W contains an unknown concentration of sodium chlorate(I).

10.0 cm³ of **W** is diluted with distilled water to make a total volume of 100 cm^3 of bleach solution. 25.0 cm³ of this diluted bleach solution is added to an excess of hydrogen peroxide and the volume of gas produced measured under room conditions. The experiment is repeated and on average 25.0 cm³ of diluted bleach solution produces 42.0 cm^3 of gas.

Calculate the concentration, in $g dm^{-3}$, of sodium chlorate(I) in **W**.

concentration of NaClO in $W = \dots$ gdm⁻³ [3]

[Total: 13]

3 Fig. 3.1 describes a sequence of reactions that can be used to produce a food additive, compound **Y**, from CH_3CH_2Cl .

type of bond	number of bonds in X
sigma (σ)	
рі (л)	

[2]

[Total: 8]

4 In industry, ethanol is made by reacting ethene with steam in the presence of H_3PO_4 .

reaction 1
$$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$$

(a) Use the bond energy values in Table 4.1 to calculate the enthalpy change, ΔH_r , for reaction 1.

bond	bond energy/kJmol ⁻¹
C–C	350
C=C	610
C≡C	840
C–H	410
C–O	360
C=O	740
O–H	460

Table 4.1

 $\Delta H_{\rm r} = \dots k J \, {\rm mol}^{-1}$ [2]

(b) Reaction 1 reaches equilibrium at constant temperature and pressure.

Deduce what effect increasing the pressure will have on the amount of ethanol in the new equilibrium mixture. Use Le Chatelier's principle to explain your answer.

effect of increasing pressure explanation

(c) The mechanism for reaction 1 can be described in three steps. Steps 1 and 2 for reaction 1 are shown in Fig. 4.1.

step 2

(i) Describe the behaviour of H_3PO_4 in step 1 in Fig. 4.1. Explain your answer.

......[1]

(ii) Identify the species that behaves as an electrophile in step 2 in Fig. 4.1. Explain your answer.

.....[1]

(iii) Complete Fig. 4.2 to show the mechanism for step 3 of reaction 1. Include charges, dipoles, lone pairs of electrons and curly arrows, as appropriate.

(d) Describe the covalent bonds present between the carbon atoms in an ethene molecule by completing Table 4.2.

Table 4.2

	sigma (σ)	pi (π)
type of orbitals involved in bond		
how the orbitals overlap		

5 (a) Describe structural isomerism.

.....

-[1]
- (b) A and B are structural isomers with molecular formula $C_5H_{10}O$.

They are both straight-chained molecules with only one functional group.

Table 5.1 describes observations when separate samples of \bf{A} and \bf{B} are added to different reagents.

reagent	А	В	
2,4-dinitrophenylhydrazine (2,4-DNPH reagent)	orange precipitate appears	orange precipitate appears	
Tollens' reagent	silver mirror appears	no reaction	
alkaline I ₂ (aq)	no reaction	no reaction	

(i) Name the functional group present in both A and B.

......[1]

(ii) Draw the structures of **A** and **B** in the boxes.

(c) C is a structural isomer of A and B.

C is straight chained and has two functional groups.

C shows only one type of stereoisomerism.

Table 5.2 describes observations when separate samples of ${\bf C}$ are added to different reagents.

11

reagent	С
2,4-dinitrophenylhydrazine (2,4-DNPH reagent)	no reaction
Br ₂ (aq)	orange to colourless
alkaline I ₂ (aq)	yellow precipitate appears

(i) Draw the structure of **C** in the box.

(ii) Name the type of stereoisomerism shown by molecules of **C**.

......[1]

www.sparkl.me

[2]

(d) D reacts in the presence of a sulfuric acid catalyst to form E and water.

The structure of **E** is shown in Fig. 5.1.

Fig. 5.1

- (i) Name the functional group present in E.
-[1]
- (ii) Identify the type of reaction that occurs when D reacts to form E.

......[1]

(iii) Draw the structure of **D** in the box.

[1]

Fig.	5.2
------	-----

Table	5.	3
-------	----	---

bond	functional groups containing the bond	characteristic infrared absorption range (in wavenumbers)/cm ⁻¹
C–O	hydroxy, ester	1040–1300
C=C	aromatic compound, alkene	1500–1680
C=O	amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750
C≡N	nitrile	2200–2250
C–H	alkane	2850–2950
N–H	amine, amide	3300–3500
O-H	carboxyl hydroxy	2500–3000 3200–3600

Use Fig. 5.2 and Table 5.3 to predict **two** differences in the absorptions above 1500 cm^{-1} of the infrared spectrum of **D** compared to **E**. Explain your answer.

BLANK PAGE

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w}$ = 1.00 × 10 ⁻¹⁴ mol ² dm ⁻⁶ (at 298K (25 °C))
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

							The Per	iodic Tal	The Periodic Table of Elements	ments							
								Group	dn								
1	2											13	14	15	16	17	18
							-										2
							т										He
				Key			hydrogen 1.0										helium 4.0
e	4		Ø	atomic number		L						5	9	7	8	6	10
	Be		atoi	atomic symbol	loc							Ш	ပ	z	0	ш	Ne
6.9 be	beryllium 9.0		relat	name relative atomic mass	SSI							boron 10.8	carbon 12.0	nitrogen 14.0	oxygen 16.0	fluorine 19.0	neon 20.2
	12											13	14	15	16	17	18
	Mg											Ρl	N.	٩	ა	Cl	Ar
sodium mag 23.0	magnesium 24.3	с	4	S	9	7	80	o	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0	sulfur 32.1	chlorine 35.5	argon 39.9
		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
		Sc	F	>	ŗ	Мп	Fе	ပိ	ïZ	Cu	Zn	Ga	Ge	As	Se	Br	Кr
ε	calcium sci 40.1	scandium 45.0	titanium 47.9	vanadium 50.9	chromium 52.0	manganese 54.9	iron 55.8	cobalt 58.9	nickel 58.7	copper 63.5	zinc 65.4	gallium 69.7	germanium 72.6	arsenic 74.9	selenium 79.0	bromine 79.9	krypton 83.8
	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
		~	Zr		Mo	ц	Ru	Rh	Pd	Ag	Cq	In	Sn	Sb	Те	Ι	Xe
rubidium str 85.5	strontium y	yttrium 88.9	zirconium 91.2	niobium 9.2.9	molybdenum t Q5 q	technetium -	ruthenium 101 1	rhodium 102 9	106.4	silver 1.07 9	cadmium 112 4	indium 114.8	tin 118.7	antimony 121 R	tellurium 127.6	iodine 126.9	xenon 131.3
-	+	17-71	72		74	75	76	77	78	79	80	81	82	83	84	85	86
		anthanoids	Ŧ	Та	N		SO	Ir	Ę	Au	Hg	Τl	Pb	B	Ро	At	Rn
	barium 137.3		hafnium 178.5	~	tungsten 183.8	rhenium 186.2	osmium 190.2	iridium 192.2	platinum 195.1	gold 197.0	mercury 200.6	thallium 204.4	lead 207.2	bismuth 209.0	polonium –	astatine -	radon
		89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
ц		actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	ő	ЧN	Fl	Mc	2	Ъ	Og
	radium -	2	rutherfordium 	dubnium –	seaborgium -	bohrium –	hassium	meitnerium -	darmstadtium -	roentgenium -	copernicium -	nihonium I	flerovium -	moscovium	livermorium -	tennessine -	oganesson -
		57	58	59	60	61	62	63	64	65	66	67	68	69	20	71	
lanthanoids		La	0e	ŗ	PN	Ът	Sm	Eu	Вd	Дþ	D	Ч	ц	Tm	γb	Lu	
	lan 1	lanthanum 138.9		praseodymium 140.9	ne	promethium -	samarium 150.4	europium 152.0	gadolinium 157.3	terbium 158.9	dysprosium 162.5	holmium 164.9	erbium 167.3	thulium 168.9	ytterbium 173.1	lutetium 175.0	
		89	06	91	92	93	94	95	96	97	98	66	100	101	102	103	
actinoids		Ac	Тh	Ра	⊃	dN	Pu	Am	CB	为	ŭ	Es	Е Н	Мd	No	Ļ	
	ă 	actinium -	thorium 232.0	protactinium 231.0	uranium 238.0	neptunium -	plutonium –	americium -	curium	berkelium -	californium –	einsteinium -	fermium -	mendelevium -	nobelium -	lawrencium -	

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are Webergements. The Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely av at www.cambridgeinternational.org after the live examination series.