CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\circledast}$ IGCSE is the registered trademark of Cambridge International Examinations. WWW.Sparkl.me

Page		2	Mark Scheme	Syllabus	Paper	
•			Cambridge International AS/A Level – October/November 2015	9702	23	
l (a	a)	or	ergy or <i>W</i> : kg m ² s ⁻² wer or <i>P</i> : kg m ² s ⁻³		M1	
		or	ensity or <i>I</i> : kg m ² s ⁻² m ⁻² s ⁻¹ (from use of energy expression) m ² s ⁻³ m ⁻² (from use of power expression)			
			ication of simplification to $kg s^{-3}$		A1	[2]
(k	ɔ)	(i)	ρ : kg m ⁻³ , c: m s ⁻¹ , f: s ⁻¹ , x ₀ : m		M1	
			substitution of terms in an appropriate equation and simplification to has no units	show K	A1	[2]
		(ii)	$I = 20 \times 1.2 \times 330 \times (260)^2 \times (0.24 \times 10^{-9})^2$		C1	
			= 3.1×10^{-11} (W m ⁻²)		C1	
			$= 31 (30.8) \text{pW} \text{m}^{-2}$		A1	[3]
2 (a	a)	(i)	(the loudspeakers) are connected to the same signal generator		B1	[1]
		(ii)	 the waves (that overlap) have phase difference of zero or path of zero and so <i>either</i> constructive interference or displacement larger 	difference	B1	[1]
			2. the waves (that overlap) have phase difference of $(n + \frac{1}{2}) \times 360$ $(n + \frac{1}{2}) \times 2\pi$ rad or path difference of $(n + \frac{1}{2})\lambda$ and so <i>either</i> destructive interference <i>or</i> displacements cancel/smaller)° or	B1	[1]
			3. the waves (that overlap) are in phase or have phase difference or $2\pi n$ rad or path difference of $n\lambda$ and so either constructive interference or displacement larger	of <i>n</i> 360°	B1	[1]
(k	c)	time	e period = 0.002 s or 2 ms		C1	
		wa	ve drawn is half time period		B1	
		am	plitude 1.0 cm (same as Fig. 2.2)		B1	[3]

www.sparkl.me

Ρ	age 3			Mark Scheme	Syllabus	Pape	er
		(Cam	bridge International AS/A Level – October/November 2015	9702	23	
3	(a) ((i)	1.	$s = ut + \frac{1}{2}at^2$			
				$192 = \frac{1}{2} \times 9.81 \times t^2$		C1	
				t = 6.3 (6.26) s		A1	[2]
			2.	max $E_{\rm k}$ (= mgh) = 0.27 × 9.81 × 192		C1	
				or			
				calculation of v (= 61.4) and use of $E_{\rm K}$ (= ½ mv^2) = ½ × 0.27 ×	(61.4) ²	(C1)	
				max <i>E</i> _k = 510 (509) J		A1	[2]
	(i	i)	vel	ocity is proportional to time or velocity increases at a constant ra	ate		
			as	acceleration is constant or resultant force is constant		B1	[1]
	(11	i)	1154	e of $v = at$ or $v^2 = 2as$ or $E = \frac{1}{2}mv^2$ to give $v = 61(.4) \text{ m s}^{-1}$		B1	[1]
	(•,	use	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		ы	[']
	(b) ((i)	<i>R</i> ii	ncreases with velocity		B1	
			res	sultant force is $mg - R$ or resultant force decreases		B1	
			aco	celeration decreases		B1	[3]
	(i	i)	at ۱	$v = 40 \mathrm{ms^{-1}}, R = 0.6 (\mathrm{N})$		C1	
			0.2	$7 \times 9.8 - 0.6 = 0.27 \times a$			
			a =	- 7.6 (7.58) m s ⁻²		A1	[2]
	(ii	i)	R =	= weight for terminal velocity		B1	
			eith or	her weight requires velocity to be about $80 \mathrm{m s^{-1}}$ at $60 \mathrm{m s^{-1}}$, <i>R</i> is less than weight			
			so	does not reach terminal velocity		B1	[2]
4	(a) ((i)	rea	$extion/vertical force = weight - P \cos 60^{\circ}$		C1	
				= 180 – 35 cos 60°			
				= 160 (163)N		A1	[2]
	(i	i)	wo	rk done = 35 sin $60^{\circ} \times 20$			
				= 610 (606) J			

ΡI

Page 4			Mark SchemeSyllabusCambridge International AS/A Level – October/November 20159702		Paper 23	
	(b)	(i)	work done by force P = work done against frictional force		B1	[1]
		(ii)	horizontal component of <i>P</i> is equal and opposite to frictional force		B1	
			vertical component of <i>P</i> + normal reaction force equal and opposite	to weight	B1	[2]
5	(a)	(i)	resistance = V/I		B1	
			very high/infinite resistance at low voltages		B1	
			resistance decreases as V increases		B1	[3]
		(ii)	p.d. from graph 0.50 (V)		C1	
			resistance = $0.5/(4.4 \times 10^{-3})$			
			= 110 (114) Ω		A1	[2]
	(b)	(i)	current (= $1.2/375$) = 3.2×10^{-3} A		A1	[1]
		(ii)	current in diode = 4.4×10^{-3} (A) total resistance = $1.2/4.4 \times 10^{-3}$ = 272.7 (Ω)		C1	
			resistance of $R_1 = 272.7 - 113.6 = 160 (159)\Omega$		A1	
			or			
			p.d. across diode = $0.5 V$ and p.d. across $R_1 = 0.7 V$		(C1)	
			resistance of $R_1 = 0.7/4.4 \times 10^{-3}$ = 160 (159) Ω		(A1)	[2]
		(iii)	power = IV or I^2R or V^2/R		C1	
			ratio = $(4.4 \times 0.5)/(3.2 \times 1.2)$ or $[(4.4)^2 \times 114]/[(3.2)^2 \times 375]$			
			or $[(0.5)^2 \times 375]/[114 \times (1.2)^2]$ = 0.57		A1	[2]
6	(a)	wa	ves from loudspeaker (travel down tube and) are reflected at closed e	end	B1	
			o waves (travelling) in opposite directions with same frequency/wavele erlap	ength	B1	[2]
	(b)	(i)	0.51 m 0.85 m			

(ii) A at open end, N at closed end, with an N and A in between, equally s (by eye)

www.sparkl.me

Page 5		5 Mark Scheme		Syllabus	Paper 23	
		(Cambridge International AS/A Level – October/November 2015			
7	(a)	stre	ess or $\sigma = F/A$		C1	
		ma	x. tension = UTS × A = $4.5 \times 10^8 \times 15 \times 10^{-6}$ = 6800 (6750)N		A1	[2
	(b)	ρ=	m/V		C1	
			$ght = mg = \rho Vg = \rho ALg$ $50 = 7.8 \times 10^3 \times 15 \times 10^{-6} \times L \times 9.81$		C1	
		L =	$5.9 (5.88) \times 10^3 m$		A1	
		or				
			ximum mass = $6750/9.81 = 688 \text{ kg}$		(C1)	
		ma L =	ss per unit length = ρA = 0.117 kg m ⁻¹ 688/0.117 = 5.9 × 10 ³ m		(C1) (A1)	
		or				
			ximum mass = 6750/9.81 = 688 kg ume = m/ρ = 0.0882 m ³ = <i>LA</i>		(C1) (C1)	
		L =	$0.0882/15 \times 10^{-6} = 5.9 \times 10^{3} \text{ m}$		(A1)	[3
3	(a)	pro	ss-energy ton number or charge cleon number		B2	[2
	(b)	(i)	$E_{\rm k} = \frac{1}{2} mv^2$ and $p = mv$ with working leading to			
			[via $E_{\rm k} = \frac{1}{2}m^2 v^2 / m$ or $\frac{1}{2}m(p/m)^2$]			
			to $E_{\rm k} = \frac{p^2}{2m}$		B1	[1
		(ii)	$p = (2E_km)^{\frac{1}{2}}$ hence $(2[E_km]_{\alpha})^{\frac{1}{2}} = (2[E_km]_{Th})^{\frac{1}{2}}$		C1	
			$2\times [E_k]_{Th}\times 234=2\times 6.69\times 10^{-13}\times 4$		C1	
			$[E_k]_{Th} = 1.14 \times 10^{-14} \text{ J}$ = 71(.5) keV		A1	
			or			
			calculation of speed of α -particle = $1.42 \times 10^7 m s^{-1}$ calculation of momentum of α -particle/nucleus = $9.43 \times 10^{-20} N s$			
			$[E_k]_{Th}$ = 1.14 × 10 ⁻¹⁴ J			

 $[E_k]_{Th} = 1.14 \times 10^{-14} \text{ J}$ = 71(.5)keV

www.sparkl.me